Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins.
نویسندگان
چکیده
Magnetic resonance imaging (MRI) has revolutionized biomedical science by providing non-invasive, three-dimensional biological imaging. However, spatial resolution in conventional MRI systems is limited to tens of micrometres, which is insufficient for imaging on molecular scales. Here, we demonstrate an MRI technique that provides subnanometre spatial resolution in three dimensions, with single electron-spin sensitivity. Our imaging method works under ambient conditions and can measure ubiquitous 'dark' spins, which constitute nearly all spin targets of interest. In this technique, the magnetic quantum-projection noise of dark spins is measured using a single nitrogen-vacancy (NV) magnetometer located near the surface of a diamond chip. The distribution of spins surrounding the NV magnetometer is imaged with a scanning magnetic-field gradient. To evaluate the performance of the NV-MRI technique, we image the three-dimensional landscape of electronic spins at the diamond surface and achieve an unprecedented combination of resolution (0.8 nm laterally and 1.5 nm vertically) and single-spin sensitivity. Our measurements uncover electronic spins on the diamond surface that can potentially be used as resources for improved magnetic imaging. This NV-MRI technique is immediately applicable to diverse systems including imaging spin chains, readout of spin-based quantum bits, and determining the location of spin labels in biological systems.
منابع مشابه
Sparse reconstruction of molecular images: the MRFM challenge
Recently, an emerging technology called magnetic resonance force microscopy (MRFM) has demonstrated the ability to detect and localize magnetic force signals originating from individual electron spins and from small ensembles of nuclear spins. By measuring weak magnetic forces from hydrogen nuclei, three dimensional (3D) magnetic resonance images with nanometer resolution have been successfully...
متن کاملSub-nanometer resolution in three-dimensional magnetic-resonance imaging of individual dark spins
M.S. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R.L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby Department of Physics, Harvard University, Cambridge, Massachusetts 02138 USA Department of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 USA Vienna Center for Quantum Sc...
متن کاملFabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملFourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond.
Optically detected magnetic resonance using nitrogen-vacancy (NV) colour centres in diamond is a leading modality for nanoscale magnetic field imaging, as it provides single electron spin sensitivity, three-dimensional resolution better than 1 nm (ref. 5) and applicability to a wide range of physical and biological samples under ambient conditions. To date, however, NV-diamond magnetic imaging ...
متن کاملQuantum control of proximal spins using nanoscale magnetic resonance imaging
Quantum control of individual spins in condensed-matter systems is an emerging field with wide-ranging applications in spintronics1, quantum computation2 and sensitive magnetometry3. Recent experiments have demonstrated the ability to address and manipulate single electron spins through either optical4,5 or electrical techniques6–8. However, it is a challenge to extend individual-spin control t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature nanotechnology
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2014